Биодеградация ксенобиотиков как самозащита природы
Загрязнение окружающей среды и переработка отходов — серьезные проблемы современности. Одним из лучших путей их решения является биодеградация — наиболее естественный и экологически безопасный способ уничтожения отходов цивилизации.
Представленная статья ставит задачу показать, что наша биосфера всю историю своего существования находится под надежной и неусыпной охраной микробов-деструкторов, для которых самые ядовитые отходы являются лакомством. А заодно осветить возможности биодеградации.
Как грибы спасли мир
Наверное, каждый читатель знаком с понятием о круговоротах биогенных элементов — углерода, азота, фосфора, серы, железа. Слово «круговорот» указывает на замкнутость — в течение длительного времени атомы элемента в него вовлечены, и надолго из цикла не изымаются. Именно замкнутость круговоротов элементов определяет устойчивость биосферы, существующей уже несколько миллиардов лет.
Но однажды в истории нашей планеты произошел разрыв круговорота, пожалуй, самого важного для жизни элемента — углерода. Было это около 300 миллионов лет назад, в каменноугольном периоде. Тогда облик планеты стремительно менялся, и появилась новая экосистема, доселе не встречавшаяся — лес.
Лес состоит из деревьев, а деревья производят древесину. Значительная составная часть древесины — лигнин — является гидрофобным и нерастворимым сшитым полимером оксикоричных спиртов; фактически, он представляет собой природную пластмассу.
Даже в наши дни он подвергается биодеградации с трудом, при помощи ферментов лакказ, продуцируемых некоторыми грибами-ксилотрофами. А в описываемое время грибы-деструкторы древесины еще не существовали. Мертвая древесина тогда не гнила, а обугливалась (подвергалась абиотической деструкции). Или все-таки гнила, но частично: тогдашние редуценты выедали целлюлозу, а лигнин в виде «бурой гнили» оставался и со временем все равно превращался в уголь.
Так на месте первых лесов формировались залежи каменного угля.
Процесс карбонификации древесины шел, вероятно, по той же схеме, что и на современных торфяниках:
лигнин → торф → бурый уголь → каменный уголь.
На каждой стадии схемы росло относительное содержание углерода в ископаемых остатках.
То есть, как раненое существо теряет кровь, так и биосфера того времени стала терять углерод. В теории, это могло привести к катастрофе. Через несколько миллионов лет значительная часть углерода из живого вещества должна была превратиться в мертвый уголь, и жизнь на Земле или полностью погибла бы, или была бы отброшена в своем развитии обратно в ранний палеозой.
Но этот страшный сценарий не сбылся. Появление нового пищевого ресурса открыло новую экологическую нишу, которая должна была заполниться.
И со временем развились нужные грибы, необходимые ферменты и хитроумные приемы, используемые грибами для разложения лигнина без вреда для собственных тканей.
Конечно, формирование углей продолжается и сейчас — на сфагновых болотах и торфяниках, где создаются уникальные условия с подавлением процесса гниения. Но масштабы этого процесса уже не те, заходит он не столь далеко, останавливаясь, как правило, на стадии бурого угля.
В целом круговорот углерода в биосфере снова стал замкнутым, что, в конечном итоге, привело к появлению нас с вами.
Этот пример очень эффектно демонстрирует возможности биодеградации — деструкции токсичных или трудноусваиваемых веществ специализированными формами жизни.
Живой и мертвый... кислород
И, надо заметить, пример этот далеко не первый. Задолго до появления деревьев атмосфера Земли стала насыщаться продуктом жизнедеятельности цианобактерий, агрессивным и токсичным окислителем — молекулярным кислородом О2. Для первых живых организмов и современных анаэробных бактерий кислород так же ядовит, как газообразный хлор для человека!
Случилось событие, именуемое не иначе как кислородной катастрофой. Но жизнь и тогда сумела приспособиться.
Сначала появились аэротолерантные микробы, умеющие обезвреживать кислород (опять биодеградация!). Позже жизнь «догадалась», что кислород — чрезвычайно сильный акцептор электронов, и окисляя им органические молекулы, можно получить баснословное количество необходимой для жизнедеятельности энергии. И сейчас большинство форм жизни без кислорода существовать не способно.
Короче говоря, экологический кризис, охвативший Землю в наше время и связанный с загрязнением окружающей среды человеком, не первый и наверняка не последний. С уверенностью можно сказать, что он будет преодолен.
Это, конечно, не значит, что на кризис следует закрывать глаза. Ведь предыдущие кризисы длились миллионы лет, а хочется завершить его побыстрее!
Но, с другой стороны, демонизировать человеческий род и представлять его «раковой опухолью на теле земли» тоже не стоит.
В конце концов, появление новых видов, умеющих производить новые вещества, происходит постоянно. И в процессе эволюции постоянно появляются новые виды, приспособленные эти вещества кушать, то есть возвращать обратно в круговорот элементов.
В свете вышесказанного, ажиотаж вокруг сжигания ископаемого топлива не вполне обоснован. Ведь сейчас в биосферу возвращается тот углерод, который был из нее когда-то изъят.
Terra incognita
Человек приспособил биодеградацию для своих нужд. Это явление используется для очистки сточных вод уже сотню лет. Английский химик Диброн в 1887 году смог очистить сточную жидкость, выдерживая в ней культуру микроорганизмов. А в 1916 году в той же Англии, в промышленном Манчестере, построили первый аэротенк, и ввели понятие «активный ил».
Еще лет двадцать—двадцать пять назад считалось, что способность к метаболизму ксенобиотиков (в переводе с древнегреческого этот термин означает «чуждый жизни»: ξενος — чуждый и βιος — жизнь) у микроорганизмов очень ограничена, и большинство из них не используется. Но в настоящее время убедительно показана способность как аэробных, так и анаэробных микроорганизмов к деградации ксенобиотиков.
Когда процесс осуществляется не индивидуальным микроорганизмом, а структурированной микробной ассоциацией (сложность которой вполне сопоставима с многоклеточным организмом), эффективность и глубина деградации органических соединений заметно увеличивается.
Микроорганизмы, способные к переработке ксенобиотиков, довольно разнообразны, и зачастую высоко специализированы. Биодеградация имеет глубокую фундаментальную основу, заключающуюся в громадном разнообразии видов и форм микроорганизмов, встречающихся в природе, и скорости их непрерывной эволюции.
Микробиологи сходятся во мнении, что описанные в настоящее время микробы составляют от 0,1% до нескольких процентов их подлинного разнообразия. Свыше 90% из них не растут в искусственных средах и именуются общим термином «некультивируемые».
Это громадный пробел в таксономии! Нам практически ничего не известно об их метаболических путях и возможностях метаболизма.
Здесь спрятано много удивительных тайн и будущих переворотов в науке. Когда эти тайны будут разгаданы, наши представления о жизни на Земле существенно изменятся, а классический учебник биохимии разрастется до объемов энциклопедии «Терра».
Следовательно, нет ничего удивительного в том, что постоянно пополняется список веществ, подверженных биодеградации.
Правильный путь
Эффективность метода биодеградации основана на поразительных гибкости и совершенстве метаболических путей микроорганизмов.
Биосфера способна перерабатывать практически любое химическое вещество. Микробные популяции создают новые, не существовавшие ранее ферменты (а заодно и кодирующие их плазмидные гены), в эксклюзивном порядке к любому продукту химической промышленности.
Понимание этого вселяет надежду на то, что современный экологический кризис когда-нибудь будет преодолен. Ну а мы, люди науки, должны всеми мерами этому способствовать.опубликовано econet.ru
Автор: Антон Миндубаев
А ЧТО ВЫ ДУМАЕТЕ ОБ ЭТОМ?